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Recommendation Systems
Recommendation systems are personalizing our web experience.

What to buy  What to listen  What to watch 
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Place your screenshot here
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Book recommendations from Goodreads when logging in with an Amazon account.

Biography

Comics

Place your screenshot here
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Example explanation for a recommendation.
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Place your screenshot here
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Why-Not Question: 

Why don’t I get recommended any Computer Science books ?

Place your screenshot here

Biography

Comics

Place your screenshot here

Explainable Recommendation Systems
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Why-Not Explanations

Why-Not Question:  
• Why an item or category of items is not in the recommendation list ? 
• Why an item or category of items is not ranked in a higher position ?

Why-Not Explanations: 
• Explain the absence of certain options from a user’s recommendation list.
• Provide more information to the system designer.
• Promote decision transparency and strengthen fairness.
• Detect discriminative systems and biases in the original data. 
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Related work
Recommenders

Explainable Recommenders

Why-Not Questions

● Collaborative 
Filtering [12]

● Content-Based 
Filtering [8]

● Context-Based 
Recommenders [17]

● …

● Explainable Matrix 
Factorization [1]

● Rule Mining [21] 
● Graph Based [5]
● Black-Box Explanations [20]
● Counterfactual Explanation 

for ML
● …

● Why-Not Questions In 
Databases [6, 14],

● Top-K Spatial Queries [7] 
Workflow Analysis [4] 

● …

• Why-Not Questions In 
Collaborative Filtering [13]

• Why-Not Explainable 
Recommenders
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Background: Heterogeneous graph 

An heterogeneous graph G = (V, E, θ) consists of a set of nodes V, a set of edges E ⊆ V ×V, and a mapping θ from each node and 
each edge to their types, such that θV : V →TV and θE : E →TE with |TV|+|TE | > 2.

In this work a heterogeneous graph generally contains at least two node types:
• users U ∈ TV

• items I ∈ TV 9
Why-Not Explanations for Recommenders ICDE2024
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Background: Recommendation Algorithm: 
Personalized PageRank (PPR) 

The distribution of a random walk in G, starting at u: 
○ with probability α: teleports to a set of seed nodes {s}
○ with probability 1 − α: continues the walk to a randomly 

chosen outgoing edge.

α → teleportation probability
s → single seed
es → the one-hot vector
W → the transition matrix

Athanasios N. Nikolakopoulos and George Karypis. 
RecWalk: Nearly Uncoupled Random Walks for Top-N 
Recommendation. February 2019.

Why-Not Explanations for Recommenders ICDE2024

The item i with the highest PPR(u,i) will be 
recommended.
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Problem Definition

Given:
● a graph 𝐺 = (𝑉 , 𝐸, 𝜃), 
● a user 𝑢, 
● a Why-Not Item WNI, 
● and an initial recommendation 𝑟𝑒𝑐

a Why-Not explanation is the set of edges 
𝐴∗ ⊆ 𝐴, 𝐴 ∈ {𝐴 + , 𝐴−}, with:

● 𝐴+ = {𝑎+ | 𝑎+ = (𝑢,𝑖) ∉ 𝐸,𝑖 ∈ 𝐼 }, and 
● 𝐴− = {𝑎− | 𝑎− = (𝑢,𝑖) ∈ 𝐸,𝑖 ∈ 𝐼 }

such that 𝐺 ′ = (𝑉 , 𝐸′ , 𝜃), with 𝐸 ′ = 𝐸 ∪ 𝐴+ \ 𝐴−

generates WNI as the top-1 recommendation.

Why-Not Explanations for Recommenders ICDE2024
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Example of Why-Not explanations

A+= {(2,9)}
“If Paul reads Lord of the Rings, the recommendation 

will be Harry Potter”

A-= {(2,11), (2,14)}
“If Paul had not read Candide and C the 

recommendation, would have been Harry Potter”

Remove Mode
Pinpoints PAST ACTIVITY 

Add Mode
Suggests NEW ACTIONS

Why-Not Explanations for Recommenders ICDE2024

Why Harry Potter is not my recommendation?
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Example of Why-Not explanations

Remove Mode
Pinpoints PAST ACTIVITY 

Add Mode
Suggests NEW ACTIONS

Why Harry Potter is not my recommendation?

1. List the existing/potential neighbors by their contribution to the 
current recommendation compared to Why-Not Item.

2. Disconnect/Connect a set of neighbors so that the 
recommendation changes to the Why-Not Item.
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EMiGRe: a Framework for Explaining Missing Graph 
Recommendations
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Incremental heuristic in Remove 
Mode





PPR(2,12) = 0.034 PPR(2,16) = 0.039





∑ = 0.005

-0.0243

0.0 0.005

0.0243



-0.0243

0.0 0.005

0.0243

∑ = 0.005



∑ = -0.0193

-0.0243

0.0 0.005



PPR(2,12) = 0.047 PPR(2,16) = 0.023

After removing the explanation …
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Dataset Analysis

#categories#reviews#items#users#edges#nodesDataset

4358 23353 7271 999687 184114 002Amazon

Edge Types
nodestype

(user item)“rated”

(user review)“reviewed”

(item review)“has-review”

(item category)“belongs-to”

Why-Not Explanations for Recommenders ICDE2024

Why-Not scenario definition:

• Target users: 100 random “normal” users from an Amazon Dataset
• Graph: 4 radius subgraph around the target user node
• Why-Not item: items ranked 2 to 10 in the recommendation list
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Algorithms and Baselines 

Algorithms:

• add_Powerset, Powerset heuristic, Add Mode; 
• add_Incremental, Incremental heuristic, Add Mode; 
• add_ex Exhaustive Comparison heuristic, Add Mode; 

• remove_Powerset Powerset heuristic, Remove Mode; 
• remove_Incremental Incremental heuristic, Remove Mode; 
• remove_ex Exhaustive Comparison heuristic, Remove Mode. 

Baselines:

• Brute force (remove mode) :  to evaluate the computation time and explanation 
size

• Exhaustive Comparison Direct : to evaluate the need for the check step

Why-Not Explanations for Recommenders ICDE2024
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Evaluation metrics

• Explanation size  : a good explanation is a short explanation

• Success rate: we need the algorithm to provide the explanations

• Time: we need the algorithm to be as fast as possible

Why-Not Explanations for Recommenders ICDE2024
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Explanation success rate per method

• Low success rate in Remove 
Mode because of the limited 
candidate space.

• Add Mode is more successful 
than Remove Mode.

• Best heuristic: Exhaustive 
Method in Add Mode.

Why-Not Explanations for Recommenders ICDE2024
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Average explanation size per method

• Low explanation size (smaller 
than 3 edges on average) for all 
heuristics.

• Remove Mode, best heuristics: 
Exhaustive and Powerset.

• Add Mode: low (or minimum) 
explanation size for all.

Why-Not Explanations for Recommenders ICDE2024
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Average computation time

• The Exhaustive Comparison 
method in Remove Mode is 
comparable to brute force when 
successful.

• Incremental Methods give faster 
results, both in Add and Remove 
Modes.

Why-Not Explanations for Recommenders ICDE2024

(c)(b)(a)Method

5,788,316,54add_Incremental

8,19133,9657,55add_Powerset

14646,5623924,3721618,32add_ex

9,158,209,07remove_Incremental

315,3115,32287,91remove_Powerset

190,1324,48173,44remove_ex

25,3821,8125,14remove_ex_direct
1008,0722,37908,73remove_brute

Average runtime in seconds per method (a) in the general 
case, (b) when an explanation is found, and (c) when no 
explanation is found.
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Conclusion & Future Work
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Conclusions

1. We proposed counterfactual-like explanations for missing recommendations, in the 

form of a set of user-rooted, existing or potential edges.

2. We proposed various heuristics for computing why-not explanations, targeting small 

explanations or fast computation.

3. Our experiments on real-world data showed the feasibility of our solution.

Future Work

● Improve the success rate by extending the expressiveness of our explanations 

(considering edge weights, creating meta-explanations, etc).

● Further evaluate the quality of the explanations, e.g., by evaluating the user satisfaction 

property.
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