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Recommendation Systems

Recommendation systems are personalizing our web experience.
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Recommendation Systems
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Book recommendations from Goodreads when logging in with an Amazon account.
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Explainable Recommendation Systems

g()()dreads Home MyBooks Browse +  Community ~ Search books
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Washington: A Life
by Ron Chernow
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America. With a breadth and depth matched by no other one-volume life, ...more

Example explanation for a recommendation.
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Explainable Recommendation Systems
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Why-Not Explanations

Why-Not Question:

® Why an item or category of items is not in the recommendation list ?
® Why an item or category of items is not ranked in a higher position ?

Why-Not Explanations:
®* Explain the absence of certain options from a user’'s recommendation list.
® Provide more information to the system designer.
® Promote decision transparency and strengthen fairness.
® Detect discriminative systems and biases in the original data.
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Related work

Why-Not Questions

Explainable Recommenders

Collaborative
Filtering [12]
Content-Based
Filtering [8]
Context-Based
Recommenders [17]

Why-Not Explainable
Recommenders
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Background: Heterogeneous graph
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Recommendation
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An heterogeneous graph G = (V, E, 0) consists of a set of nodes V, a set of edges E € V %V, and a mapping 8 from each node and
each edge to their types, such that 6,,: V —»T, and 8¢ : E ->Tg with |T\|+|T¢ | > 2.

In this work a heterogeneous graph generally contains at least two node types:

-« usersUeT
. items| e TVV Why-Not Explanations for Recommenders ICDE2024 n



Background: Recommendation Algorithm:
Personalized PageRank (PPR)

o with probability a: teleports to a set of seed nodes {s}

o with probability 1 — a: continues the walk to a randomly

} The distribution of a random walk in G, starting at u:
chosen outgoing edge.

{ PPR(u,-) = « Z(l — a)lequ

[=0

rec = argmax PPR(u,1) The item i with the highest PPR(u,i) will be
1€\ Noyt (u) recommended.

a — teleportation probability
s — single seed

e, — the one-hot vector

W — the transition matrix

RecWalk: Nearly Uncoupled Random Walks for Top-N
Recommendation. February 2019.

Athanasios N. Nikolakopoulos and George Karypis. Why-Not Explanations for Recommenders 1ICDE2024
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Problem

Definition

& Why-Not Explanations for
=T Graph Recommender Systems
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Problem Definition

Given:
e agraphG=(V,E,B#),
® a user u,
e a Why-Not Item WNI,
e and an initial recommendation rec

a Why-Not explanation is the set of edges
A*C A, Ae{A*, A7}, with:

o A*={a*|a*=(u,i)¢E,i€l} and

o A ={a|a=(ui)€E|/i€l}

suchthatG'=(V ,E',0),withE'=EUA*\ A-
generates WNI as the top-1 recommendation.

llow
Target User gk

u

TOP
Why-Not Item Recommendation
WNI rec

science
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Example of Why-Not explanations

Why Harry Potter is not my recommendation?

Add Mode
Pinpoints PAST ACTIVITY

<<<<<<<<

computer fantasy gl || e

A= {(2,9)}
“If Paul reads Lord of the Rings, the recommendation “If Paul had not read Candide and C the
will be Harry Potter’ recommendation, would have been Harry Potter’
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Example of Why-Not explanations

Why Harry Potter is not my recommendation?

Add Mode
Pinpoints PAST ACTIVITY

<<<<<<<<

computer fantasy gl || e

1. List the /potential neighbors by their contribution to the
current recommendation compared to Why-Not Item.

2. /Connect a set of neighbors so that the
recommendation changes to the Why-Not Item.



EMiIGRe: a Framework for Explaining Missing Graph
Recommendations

Suggests NEW actions Pinpoints PAST activity

[ Exhaustive }

[ Top-1 Comparison } Comparison

Compares the ranking of  Compares the ranking of

Why-Not Explanation the WNI and REC WNI and ALL target items
Computation Explanation Heuristic
‘\ Incremental ‘ [ Powerset ’

Targets FASTER  Targets SHORTER
solutions solutions

contributionggq(n;) = PPR(n;,, WNI | A) — PPR(n;,rec | A)
contribution,m,(n;) = W(u,n;) - (PPR(n;,rec | A) — PPR(n;, WNI | A))

15



Incremental heuristic in Remove
Mode
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contribution,,,(n;) = W(u,n;) - (PPR(n;,rec| A) — PPR(n;, WNI | A))

w
Target User s




contribution,,,(n;) = W(u,n;) - (PPR(n;,rec| A) — PPR(n;, WNI | A))

w
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After removing the explanation ...
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Experimental

Evaluation
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Dataset Analysis

Why-Not scenario definition:

* Target users: 100 random “normal” users from an Amazon Dataset
* Graph: 4 radius subgraph around the target user node
* Why-Not item: items ranked 2 to 10 in the recommendation list

Dataset #nodes #edges #users #items #reviews #categories

Amazon 114 002 687 184 1999 53 727 58 233 43
Edge Types

type nodes

“rated” (user—item)

“reviewed” (user—review)

“has-review” (item—review)

“belongs-to” (item—category)

Why-Not Explanations for Recommenders ICDE2024
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Algorithms and Baselines

Algorithms:

« add Powerset, Powerset heuristic, Add Mode;
« add_Incremental, Incremental heuristic, Add Mode;
« add_ex Exhaustive Comparison heuristic, Add Mode;

« remove_ Powerset Powerset heuristic, Remove Modeg;
« remove_lIncremental Incremental heuristic, Remove Mode;
« remove_ex Exhaustive Comparison heuristic, Remove Mode.

Baselines:
« Brute force (remove mode) : to evaluate the computation time and explanation
size

« Exhaustive Comparison Direct : to evaluate the need for the check step

Why-Not Explanations for Recommenders ICDE2024



Evaluation metrics

 Explanation size : a good explanation is a short explanation

« Success rate: we need the algorithm to provide the explanations

« Time: we need the algorithm to be as fast as possible

Why-Not Explanations for Recommenders ICDE2024



success rate

Explanation success rate per method

explanation success rate per method

70%

60% « Low success rate in Remove
50% Mode because of the limited
40% candidate space.

30
20%
10%

0%

Add Mode is more successful
than Remove Mode.

o
o~

add_powerset IS
[]
]
]
]

 Best heuristic: Exhaustive
Method in Add Mode.

add_ex

remove brute

add incremental
remove_powerset [}
remove ex direct

remove incremental

Why-Not Explanations for Recommenders ICDE2024



average explanation size

3.0

25

20

15

1.0

0.5

0.0

Average explanation size per method

average explanation size per method

add incremental

add_powerset

add ex

remove_incremental

remove_powerset

remove_ex

* Low explanation size (smaller
than 3 edges on average) for all
heuristics.

Remove Mode, best heuristics:
Exhaustive and Powerset.

* Add Mode: low (or minimum)
explanation size for all.

remove brute

remove ex direct

Why-Not Explanations for Recommenders ICDE2024




Average computation time

add Incremental 6,5 8,31 5,78 _ _
add_Powerset 57,55 133,96 8,19 * The Exhaustive Comparison
add ex 21618,32] 23924,37| 14646,56 method in Remove Mode is
remove Incremental 9,07 8,20 9,15 comparable to brute force when
remove Powerset 287,91 15,32 315,31 successful
remove ex 173,44 24,48 190,13 )
remove ex direct 25,14 21,81 25,38
remove_brute 908,73 22,37| 1008,07 * Incremental Methods give faster
. N results, both in Add and Remove
Average runtime in seconds per method (a) in the general Modes.
case, (b) when an explanation is found, and (c) when no
Kexplanation is found.

Why-Not Explanations for Recommenders ICDE2024



Conclusion &
Future Work
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Conclusion & Future Work

Conclusions
1. We proposed counterfactual-like explanations for missing recommendations, in the
form of a set of user-rooted, existing or potential edges.

2. We proposed various heuristics for computing why-not explanations, targeting small
explanations or fast computation.

3. Our experiments on real-world data showed the feasibility of our solution.

Future Work

e Improve the success rate by extending the expressiveness of our explanations
(considering edge weights, creating meta-explanations, etc).

e Further evaluate the quality of the explanations, e.g., by evaluating the user satisfaction
property.

Why-Not Explanations for Recommenders ICDE2024 -
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