"In this model, we train a sensorimotor architecture to learn in an unsupervised way a repertoire of simple motor trajectories. The implementation is based on Kohonen network / self organizing maps, and on active inference.\n",
"\n",
"## Model\n",
"\n",
"## Environment\n",
"\n",
"## Training"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "32936908",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
%% Cell type:markdown id:a95206c6 tags:
Work in progress...
# Motor sequence learning with SOMs and AIF
In this model, we train a sensorimotor architecture to learn in an unsupervised way a repertoire of simple motor trajectories. The implementation is based on Kohonen network / self organizing maps, and on active inference.